Семінари за 16.9.2020
Семінар кафедри математичного аналізу та диференціальних рівнянь
Керівники: Г.М. Торбін
Місце проведення: Національний педагогічний університет імені М.П. Драгоманова, вул. Пирогова, 9
Кімната: 448
Дата: Ср, 16 вересня 2020
Час: 17:09
Доповідач: Bill Mance (Adam Mickiewicz University, Poznań, Poland)
Тема: Borel complexity of sets of normal numbers via generic points in subshifts with specification
Анотація: We study the Borel complexity of sets of normal numbers in several numeration systems. Taking a dynamical point of view, we offer a unified treatment for continued fraction expansions and base b expansions, and their various generalisations: generalised Luroth series expansions and $\beta$-expansions. In fact, we consider subshifts over a countable alphabet generated by all possible expansions of numbers in $[0,1)$. Then normal numbers correspond to generic points of shift-invariant measures. It turns out that for these subshifts the set of generic points for a shift-invariant probability measure is precisely at the third level of the Borel hierarchy (it is a $\Pi^0_3$-complete set, meaning that it is a countable intersection of $F_\sigma$-sets, but it is not possible to write it as a countable union of $G_\delta$-sets). We also solve a problem of Sharkovsky--Sivak on the Borel complexity of the basin of statistical attraction. The crucial dynamical feature we need is a feeble form of specification. All expansions named above generate subshifts with this property. Hence the sets of normal numbers under consideration are $\Pi^0_3$-complete.


1 4 8 9 10 11 13 14 15 16 17 21 23 25 28 30